Preliminary Program: Tutorials and Workshops
(Updated Version)

Organized by
Yonsei University
Korea Advanced Institute of Science and Technology (KAIST)
Korean Institute of Electromagnetic Engineering and Science (KIEES)
Technical Program at a Glance

<table>
<thead>
<tr>
<th>Data</th>
<th>Time</th>
<th>IBK Hall</th>
<th>JH Kwak Hall</th>
<th>Helinox Hall</th>
<th>Muak Rotary Hall</th>
<th>Exhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>09:00~17:00</td>
<td>Registration (Lobby)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tuesday)</td>
<td>11:50~13:00</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:00~14:50</td>
<td>TU-PM-1A: Electromagnetic Compatibility of Switched-Mode Power Supplies (I)</td>
<td>TU-PM-2A: The Role of the IEC Advisory Committee on EMC (ACEC) in Coordinating IEC EMC Activities (I)</td>
<td>TU-PM-3: How to Publish a Paper in the EMC Transactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:50~15:10</td>
<td>Afternoon Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:10~17:00</td>
<td>TU-PM-1B: Electromagnetic Compatibility of Switched-Mode Power Supplies (II)</td>
<td>TU-PM-2B: The Role of the IEC Advisory Committee on EMC (ACEC) in Coordinating IEC EMC Activities (II)</td>
<td>TU-PM-4: Metamaterials, Periodic Structures and EBG in EMC/Wave Problems/BioEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:30~21:00</td>
<td>Welcome Reception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 June</td>
<td>08:00~18:00</td>
<td>Registration (Lobby)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wednesday)</td>
<td>09:00~10:20</td>
<td>WE-AM-1: EMC Measurements (I)</td>
<td>WE-AM-2: Wireless Power Transfer</td>
<td>WE-AM-3: EMC of Integrated Circuits (I)</td>
<td>WE-AM-4: EMC Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:20~10:40</td>
<td>Morning Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:40~12:20</td>
<td>Opening Ceremony (Venue : Kumho Art Hall)</td>
<td>Keynote Speech I : Signal and Power Integrity – Research in EMC (Christian Schuster, Hamburg University of Technology, Germany)</td>
<td>Keynote Speech II : Biological Effects of Radio Frequency Electromagnetic Fields on the Brain (Young-Hwan Ahn, Ajou University, Korea)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:20~13:30</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:30~14:50</td>
<td>WE-PM-1: EMC Measurements (II)</td>
<td>WE-PM-2: EMC Standards and Design</td>
<td>WE-PM-3: EMC of Integrated Circuits (II)</td>
<td>WE-PM-4: ESD and Transient EMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:50~15:10</td>
<td>Afternoon Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:00~18:00</td>
<td>WE-PM-9: Poster Session (I) (Venue : Lobby)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Time</td>
<td>IBK Hall</td>
<td>JH Kwak Hall</td>
<td>Helinox Hall</td>
<td>Muak Rotary Hall</td>
<td>Exhibition</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22 June</td>
<td>08:00~18:00</td>
<td>Registration (Lobby)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Thursday)</td>
<td>09:00~10:20</td>
<td>TH-AM-1: System-level EMC</td>
<td>TH-AM-2: Modeling and Simulation Techniques for EMC, SI and PI (I)</td>
<td>TH-AM-3: EMC Issues Related to Common-mode Noise (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:20~10:40</td>
<td>Morning Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:20~13:30</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:30~14:50</td>
<td>Afternoon Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:00~18:00</td>
<td>TH-PM-9: Poster Session (II) (Venue : Lobby)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:30~21:00</td>
<td>Banquet (Venue : Grand Ballroom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 June</td>
<td>09:00~17:00</td>
<td>Registration (Lobby)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:50~13:00</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:50~15:10</td>
<td>Afternoon Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:10~17:00</td>
<td>FR-PM-1B: Advances in Automotive EMC Test and Measurement</td>
<td>FR-PM-2B: Protection of the Electric Power System from High-altitude Electromagnetic Pulse (HEMP) and Intentional Electromagnetic Interference (IEMI)</td>
<td>FR-PM-4: Practical Aspects of a Comprehensive Space Charging Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tutorials and Workshops

Tutorials (Tuesday, 20 June)

TU-AM-1: Introduction to “EMC Made Simple” – Printed Circuit Board and System Design

Time 10:00 – 11:50, Tuesday, 20 June
Room IBK Hall
Chair(s) Mark Montrose (Montrose Compliance Services, Inc., Santa Clara, CA, USA)

Abstract
This tutorial presents applied, hands-on content associated with both the design of printed circuit boards and integration into an enclosure to create a functional system that meets any EMC requirement, both emissions and immunity at an introductory level. The target audience is everyone regardless of expertise level who would like to [re]learn electromagnetic theory in a unique non-academic manner “without the math”. Electrical engineering involves understanding transmission line theory thinking in the time domain. An electromagnetic field propagates between a source and load using a transmission line; radiated field or conducted current. Any propagated electromagnetic energy loss that occurs within the transmission line creates undesired common-mode current. To make Maxwell Equations Made Simple, a subset of EMC Made Simple, a visualization approach is taken that allows attendees to understand what Maxwell tells us, converting his four equations conceptually into five simple algebraic equations to solve almost any EMC problem in minutes, using only a calculator. If we understand electromagnetic theory at the circuit or component level, designing anything electrical becomes simple.

- Introduction to “EMC Made Simple” – Printed Circuit Board and System Design
 Mark Montrose (Montrose Compliance Services, Inc., Santa Clara, CA, USA)

TU-AM-2: SI/PI/EMI Modeling, Simulation and Design

Time 10:00 – 11:50, Tuesday, 20 June
Room JH Kwak Hall
Chair(s) Hideki Asai (Shizuoka University, Hamamatsu, Japan)

Abstract
Recently, with the progress of the electrical and electronic equipment, novel methodologies have been demanded for verification of the design. Therefore, a variety of electromagnetic (EM) simulation techniques have attracted attention very much for the efficient SI/PI/EMI (Signal Integrity/Power integrity/ Electromagnetic Interference) design. In this session, we discuss several kinds of numerical techniques and their applications to efficient electronic design.

- Signal Integrity (SI) Design and Analysis of Heterogeneous Integration Using Embedded Multi-die Interconnect Bridge (EMIB) Technology for High Bandwidth Memory (HBM)
 Kyungjun Cho (KAIST, Daejeon, Korea)
- Advanced SI/PI/EMI Simulation Technology for Automotive ECU Design
 Hideki Asai (Shizuoka University, Hamamatsu, Japan)
- Fast evaluation of transmission characteristics of wiring harnesses using the RLGC parameters
 Fengchao Xiao (The University of Electro-Communications, Tokyo, Japan)
- Circuit interpretation of mode conversion in differential-line interconnects under the assumption of weak imbalance
 Flavia Grassi (Politecnico di Milano, Milan, Italy)
TU-PM-1A & 1B: Electromagnetic Compatibility of Switched-Mode Power Supplies

Time 13:00 – 17:00, Tuesday, 20 June (14:50 – 15:10 Coffee Break)
Room IBK Hall
Chair(s) Gunter Keller (Deggendorf Institute of Technology, Deggendorf, Germany)

Abstract
The tutorial is subdivided into six parts: Terminology and legal requirements, EMC tests (emissions and immunity), coupling mechanisms and countermeasures, types of interferences and their characteristics, origin of electromagnetic interferences in switched-mode power supplies and practical aspects of EMC design of switched-mode power supplies (SMPS).
After an overview of international standards and test procedures the coupling mechanisms are explained in theory and in SMPS applications with a number of worked examples. Signals are classified into differential and common mode and discussed in terms of Fourier analysis.
The origin of interferences are discussed in terms of normal operating mode of SMPS in low, medium and high frequency range, common-mode and differential-mode and due to parasitics of active and passive components.
Main part (half of the time) is the EMC design, including power factor correction, EMC filter, shielding, hard and soft-switching converters, suitable active and passive components, general and specific layout recommendations, examples: buck converter, flyback converter, immunity. Many recommendations are confirmed by measurements or simulations. Other characteristics as efficiency and life time are also taken into account.

- Electromagnetic Compatibility of Switched-Mode Power Supplies
 Gunter Keller (Deggendorf Institute of Technology, Deggendorf, Germany)

TU-PM-2A & 2B: The Role of the IEC Advisory Committee on EMC (ACEC) in Coordinating IEC EMC Activities

Time 13:00 – 17:00, Tuesday, 20 June (14:50 – 15:10 Coffee Break)
Room JH Kwak Hall
Chair(s) Donald Heirman (Don HEIRMAN Consultants, Lincroft, NJ, USA)
 William Radasky (Metatech Corporation, Goleta, CA, USA)

Abstract
This Tutorial continues to update researchers in the field of EMC of the coordination of EMC standards and activities in the International Electrotechnical Commission (IEC) by the IEC Advisory Committee on EMC known as ACEC. The members of this committee include representatives of IEC technical committees that produce EMC basic standards for measurement instrumentation/measurements and also product committees that apply the basic standards along with specific test levels, performance criteria, and emission limits.

- What is ACEC?
 William Radasky (Metatech Corporation, Goleta, CA, USA)

- Recent Trends in CISPR and its Subcommittees
 Donald Heirman (Don HEIRMAN Consultants, Lincroft, NJ, USA)

- Recent Trends in TC77 and its Subcommittees
 William Radasky (Metatech Corporation, Goleta, CA, USA)

- Emission Standardization in the 2 kHz to 150 kHz Frequency Band
 William Radasky (Metatech Corporation, Goleta, CA, USA)

- EMC for E-mobility
 William Radasky (Metatech Corporation, Goleta, CA, USA)

- Recent Topics in IEC TC62 (Electrical Equipment in Medical Practice) and its Subcommittees
 Donald Heirman (Don HEIRMAN Consultants, Lincroft, NJ, USA)
TU-PM-3: How to Publish a Paper in the EMC Transactions

Time 13:00 – 14:50, Tuesday, 20 June
Room Helinox Hall
Chair(s) John Norgard (NASA/JSC EMI/EMC E3 Lab, Houston, USA)

Abstract
This tutorial is on the IEEE Transactions on Electromagnetic Compatibility (EMCT). Presentations on EMCT include:

i) How to publish a paper in the EMCT.
ii) How to prepare and write a good technical paper for the EMCT.

The presentation for part i), by Prof. Nordgaard, entitled “Publishing a Paper in the EMCT”, will cover the initial paper preparation process (topic & text), the submission process, the review cycle (Reviewers, Associate Editors, and the Editor-in-Chief), and final paper publication procedures for the IEEE Transactions on EMC. In addition, acceptance criteria are covered, along with style guides, on-line web support and help-aids, and proper paper organization.

The presentation for part ii), by Dr. Wilson, entitled “Writing a Good EMCT Paper: My Perspective” will cover aspects of writing a good paper for submission to the IEEE Transactions on EMC. Covered will be goals, hints, and dos and don'ts for the abstract, index terms, main text, and conclusions of a paper. The material is very much from the personal perspective of the presenter based on his experience as both a reviewer and a former Editor-in-Chief of the Transactions.

This EMCT tutorial is intended for anyone and everyone interested in publishing a paper in the EMCT, especially for the first time.

TU-PM-4: Metamaterials, Periodic Structures and EBG in EMC/Wave Problems/BioEM

Time 15:10 – 17:00, Tuesday, 20 June
Room Helinox Hall
Chair(s) Sungtek Kahng (Incheon National University, Incheon, Korea)

Abstract
As the operating frequency goes higher and the demands on complex architectures of electronics and new materials increase, the classic guidelines and design rules on EMC and RF device designs are facing the challenges and limitations in meeting the requirements.

In response to the need to find the alternatives, periodic structures such as FSS are adopted or hybridized with the conventional practices to stop the radiated/conducted noise and unwanted resonance more effectively. Especially, the photonic bandgap design as the periodic structures with perfect or imperfect periodicity is revisited and becomes the EBG by being adapted to RF frequency from optics.

With a different motivation, metamaterial is researched that when permittivity and permeability the constitutive parameters of a material are given unusual or usual values, they possibly result in phenomena interpreted meaningful to overcome the limitations above in EMC, microwave engineering and Bio EM problems. Particularly, the left-handedness and the infinite wavelength are introduced by negative permittivity and negative permeability and zero refractive index, respectively, and they are used to change the direction or phase of wave propagation. The dispersion engineering stemming from the metamaterials has drawn attention in that it is helpful to reduce the volume of a structure and form a bandgap free from the resonance condition of the conventional periodic structure approach. So, in this session, the analysis and design methods of FSS, DNG/SNG/AMC and EBG are dealt with as well as advanced applications to EMC/antenna/RF designs/Bio EM & Human-EM Interaction. Also, we discuss the slow-wave effects of a periodic geometry and the resonant slots(non-metamaterial) of DGS and SRR/CSRR. Last but not least, a number of electromagnetic computational methods are shown to efficiently and accurately predict the scattering and radiation of the
aforementioned structures.

- **Introduction to Metamaterials and the Advanced Technologies in EMC and RF Passive Components/Antennas**
 Sungtek Kahng (Incheon National University, Incheon, Korea)

- **Advanced Technologies in RF Active Components**
 Hongjoon Kim (Kyungpook National University, Daegu, Korea)

- **Advanced Technologies in BioEM problems**
 Sungtek Kahng (Incheon National University, Incheon, Korea)

Workshops (Friday, 23 June)

FR-AM-1: Testing of Wireless Devices in the Modern World

Time
10:00 – 11:50, Friday, 23 June

Room
IBK Hall

Chair(s)
Alex Yeo (ETS-Lindgren, Singapore)

Abstract

With the continuous development of wireless technologies and their tight integration with various electronic/computer/communication devices, EMC issues, at both the system and the intra-system levels, become increasingly important. This tutorial will begin with a general overview on IoT and the new IEEE IoT Initiative, of which the IEEE EMC Society is a member. The workshop provides an overview and primer on testing wireless devices, the biggest challenges the test labs face with testing wireless devices and their techniques for addressing those challenges. We will look at the increasing concern of IEMI effects on wireless communication. The tutorial will conclude with a review of the growing wireless activity at the National Institute of Standards and Technology, the US Government metrology lab of the USA.

- **Internet of Things: IoT, M2M, 5G & EMC**
 Mike Violette (Washington Labs, Gaithersburg, MD, USA)

- **Complex Challenges in Measuring 5G/Millimeter Wave Device Performance**
 Andy Chung (ETS-Lindgren, Tokyo, Japan)

- **Assessing the Vulnerability of Wireless Systems to (Intentional) EMI**
 Frank Leferink (University of Twente Enschede, The Netherlands; Thales Netherlands Hengelo, The Netherlands)

- **Millimeter-wave Channel Sounder Development at the National Institute of Standards and Technology**
 Perry Wilson (National Institute of Standards and Technology, Boulder, CO, USA)

Time
10:00 – 11:50, Friday, 23 June

Room
JH Kwak Hall

Chair(s)
Wen-Yan Yin (Zhejiang University, Hangzhou, China)

Abstract

In this workshop, new research progresses in the development of computational time-domain...
electromagnetics methods will be addressed for fast solving and characterizing various complex electromagnetic environment effects in the presence of high-power electromagnetic pulse (HP-EMP) or intentional electromagnetic interferences (IEMI). These methods mainly include hybrid finite difference time domain (FDTD), time-domain integral equation (TDIE), adaptive integration method (AIM) together with time-domain physics optics approximation, etc. Some typical numerical examples will be shown to demonstrate their capability for accurately predicting 3-D current and field distributions over missile, aircraft and warship platforms for different incident EMP strengths, directions, and polarization states.

Speakers: Wen-Yan Yin (Zhejiang University, Hangzhou, China)
Jian Wang (Ningbo University, Ningbo, China)

FR-AM-3: Current Activity in the CISPR 16 Series of EMC Standards

Time 10:00 – 11:50, Friday, 23 June
Room Helinox Hall
Chair(s) Martin Wiles (ETS-Lindgren, Stevenage, United Kingdom)
Zhong Chen (ETS-Lindgren, Cedar Park, TX, USA)

Abstract
The CISPR 16 series is an important basic standard in EMC and continues to be updated by CISPR Sub Committee A. Important changes to this standard continue below 30 MHz, above 1 GHz and in the areas of equipment calibration. Our speakers include experts active in the CISPR Subcommittee A and in the ANSI ASC C63® committee on EMC. Speaker and Chair Martin Wiles is the recent recipient of the IEC 1906 award for his considerable technical contributions on antenna pattern measurements above 1 GHz, on the development of receive antenna pattern criterion and on radiated emission measurements above 1 GHz." This work has been used in amendments of CISPR 16-1-4, CISPR 16-1-5 and CISPR 16-1-6. He will give an overview of the CISPR 16 standard and its current projects. This will set the scene for our other speakers including Mark Terrien who will describe changes associated with CISPR 16-1-1 on EMI receivers; Zhong Chen will discuss measurement uncertainty associated with CISPR 16-4-2; and Wolfgang Muellner will discuss the methods being developed for radiated measurements below 30 MHz.

- Overview of CISPR 16 Standard Series and Current Projects
 Martin Wiles, (ETS-Lindgren, Stevenage, United Kingdom)

- Understanding the Importance of EMI Compliance Receiver Calibration Measurements
 Mark Terrien, (Keysight Technologies, Santa Rosa, CA, USA)

- CISPR 16 Measurement Instrumentation Uncertainties from Site Contribution for Radiated Emissions Measurements above 1 GHz
 Zhong Chen (ETS-Lindgren, Cedar Park, TX, USA)

- Recent Developments in CISPR 16 Series on Measurements below 30 MHz
 Wolfgang Muellner (Seibersdorf Laboratories, Siebersdorf, Austria)

FR-PM-1A & 1B: Advances in Automotive EMC Test and Measurement

Time 13:00 – 17:00, Friday, 23 June (14:50 – 15:10 Coffee Break)
Room IBK Hall
Chair(s) Alex Yeo (ETS-Lindgren, Singapore)

Abstract
Vehicle platforms continue to become increasingly more complex with propulsion, entertainment and safety related systems all having to function reliably without impacting safety or the legacy communications infrastructure. In this workshop, industry experts will share their latest research in automotive EMC test and measurement. They will address current and future requirements brought on by the increasing use of electronic components as well as the increased demand for electric and hybrid vehicles. This has driven the
need for ever increasing permutations of system operation, operating frequency ranges and immunity levels. This will be discussed in light of current EMC test chamber design and test challenges.

- An Update on Global Automotive EMC Standards and Testing
 Hyunwoo Park, HCT (Hyundai Calibration & Certification Technology), Icheon, Korea

- EMC Chamber Design and Test Challenges for E-Vehicles and Electronic Sub-Assemblies (ESA)
 Martin Wiles (ETS-Lindgren, Stevenage, United Kingdom)

- Novel and Simplified Immunity Testing Methods for Automotive Applications
 Flavia Grassi, (Politecnico di Milano, Milan, Italy)

- Common RF Absorbers Evaluations in the W Band (75-110 GHz)
 Zhong Chen, (ETS-Lindgren, Cedar Park, Texas, TX, USA)

- Suppression of Power/Ground Noise on Power Window Control System in Automotive
 Karam Hwang, KAIST (KAIST, Daejeon, Korea)

FR-PM-2A & 2B: Protection of the Electric Power System from High-altitude Electromagnetic Pulse (HEMP) and Intentional Electromagnetic Interference (IEMI)

Time 13:00 – 17:00, Friday, 23 June (14:50 – 15:10 Coffee Break)
Room JH Kwak Hall
Chair(s) William A. Radasky (Metatech Corporation, Goleta, CA, USA)

Abstract
Over the past 28 years the International Electrotechnical Commission (IEC) has written 22 standards and reports dealing with the environments and protection of civil electronic systems from HEMP and IEMI. Because it has become clear that the electric power system is the most important critical infrastructure in advanced economies throughout the world, it is important that these standards be applied to protect the basic building blocks of the high voltage power system: substations and control centers. This tutorial will present how the IEC standards can be used to provide the necessary levels of protection against these two security threats.

- Description of the Radiated and Conducted Environments Associated with HEMP and IEMI
 William A. Radasky (Metatech Corporation, Goleta, CA, USA)

- Description of the Vulnerability of Electronic Equipment to HEMP and IEMI
 William A. Radasky (Metatech Corporation, Goleta, CA, USA)

- Approach to the Hardening of Power Substations and Control Centers to HEMP and IEMI
 William A. Radasky (Metatech Corporation, Goleta, CA, USA)

FR-PM-3: EMC Standard Measurement in Japanese Industry – Efforts to Improve the Accuracy of Measurement

Time 13:00 – 14:50, Friday, 23 June
Room Helinox Hall
Chair(s) Osami Wada (Kyoto University, Kyoto, Japan)

Abstract
In the Technical Working Groups in Expert Committee on EMC in KEC (KEC Electronic Industry Development Center) in Japan, practical research activities on EMC measurement technology related to EMC standard measurement have been conducted. The experts will explain important notes on ensuring measurement
accuracy and measurement reliability in conducting measurement conforming to the EMC standard. The topics in this workshop include; influence of measurement environment in radiated and conducted emission tests and influence of measurement system difference which have been clarified in a series of round robin tests; possibility of antenna calibration in an anechoic chamber and verification of its accuracy; important points on magnetic field measurement in radiated emission test below 30 MHz; and EMC measurement of automotive electronic devices. In addition, we will introduce the current status and future prospects of EMC test standards in Japan, particularly in comparison with US / European / Asian standards.

- **Workshop Overview**
 Osami Wada (Kyoto University, Kyoto, Japan)

- **Radiated Emission Test - Influence of Measurement Environment**
 Hirotugu Hashimoto, (Riken Environmental System Co. Ltd., Kumagaya, Japan)

- **Conducted Emission Test - Influence of Measurement System Difference**
 Masahiro Inoue (KEC Electronic Industry Development Center, Kyoto, Japan)

- **Verification of Accuracy and Validity of Antenna Calibration in Anechoic Chamber**
 Yujiro Seki (IPS Corporation, Nagano, Japan)

- **Important Points on Magnetic Field Measurement in Radiation Emission Test Below 30 MHz**
 Fumiaki Yaguchi (TOYO Corporation, Tokyo, Japan)

- **Japanese EMC Test Standards - Comparison with US / European / Asian Standards and Future Perspective**
 Aki Hattori (Tokin EMC Engineering Co., Ltd., Kawasaki, Japan)

- **Issues in EMC measurement of automotive electronic devices**
 Takanori Uno (DENSO EMC Engineering Service Corporation, Kariya, Japan)

FR-PM-4: Practical Aspects of a Comprehensive Space Charging Analysis

Time 15:10 – 17:00, Friday, 23 June

Room Helinox Hall

Chair(s) Bryon Neufeld (Electro Magnetic Applications, Lakewood, CO, USA)

Abstract

Space charging presents a significant safety and reliability risk for many space platforms. Proper design strategy can mitigate or greatly reduce the risks associated with space charging. It is often not feasible or is even impossible to perform full vehicle testing for space charging, and testing does not offer the possibility to quickly and inexpensively check the effectiveness of design permutations. This makes numerical analysis an important part of developing an effective design strategy against space charging risks. In this presentation, we focus on some of the practical steps and issues involved with performing a comprehensive space charging analysis. We will discuss the model geometry development, materials characterization, simulation and processing that go into numerically assessing charging risks. We will also discuss how aspects of the space environment, including different plasma environments, sunlight illumination, and plume and wake effects, impact the charging analysis.

- **Surface Charging, Geometry Development and Meshing**
 Bryon Neufeld (Electro Magnetic Applications, Lakewood, CO, USA)

- **Plume Modeling, Internal Charging**
 Tim McDonald (Electro Magnetic Applications, Lakewood, CO, USA)

- **Programmatic Considerations**
 Bob Scully (NASA, Houston, TX, USA)